

A Practical Application of Advanced Nutrition Support

CPT Kerri Murphy, RD, CNSD

Survival Skills

Objectives

- ♦ Identify nutritional dilemmas
- ♦ Maximize available resources
- Provide optimal nutrition support with available resources

Indications for Advanced Nutrition Support

♦ Enteral

- NPO 5-7 days
- Inadequate oral intake
- Dysphagia
- Burns >35% TBSA

♦ Parenteral

- Bowel Obstruction
- Severe GI Bleed
- High Output Fistula(>500mL/day)
- Severe Pancreatitis
- Intractable V/D
- Acute IBD
- Failure to tolerate TFs

NUTRITIONAL DILEMMAS

- "How" do I feed my patient?
- "When" should feeds begin?
- "How long" will the patient require additional nutrition support?
- "What" do I feed the patient?
- "How much" do I feed the patient?

"How" do I feed my patient?

♦ Oral

- ◆ Tube Feeds
 - stomach vs. small bowel feeds
- ◆ Intravenous Solution
 - peripheral vs. central

"When" should I begin feeding?

- ♦ As early as possible!!
 - Goal: prevent malnutrition
- Requirements:
 - Hemodynamic Stability (vital signs stable)
 - Access to Feed
 - Airway Protection

Natural Course of Simple Starvation without Stress (Hypometabolism)

Natural Course of Starvation with Stress (Hypermetabolism)

Reference: Page CP, Hardin TC, and Melnik G. <u>Nutritional</u> <u>Assessment and Support: A Primer (2nd Edition).</u> 1994.

Metabolic Response

- ♦ Starvation (Marasmus)
 - Catabolic hormones at basal levels & anabolic hormones decreased
 - Decreased EnergyNeeds
 - Increases utilization of alternate fuel
 - Gradual wt loss
 - Transport proteinspreserved

- ♦ Injury Stress
 - Catabolic hormones increased greater than anabolic hormones
 - Increased EnergyNeeds
 - Decreases utilization of alternate fuel
 - Rapid wt loss
 - Transport proteins reduced

"How long" will the patient require additional nutrition support?

- ♦ Short-term (<2 weeks)
- ◆ Long-term (>2 weeks)

"What" do I feed the patient?

- ◆ Specialized Products (commercial)
- Medical Army Rations
- ◆ Blenderized Diet
- Vitamin and Mineral Supplementation

"How much" do I feed the patient?"

- Perform Nutritional Assessment
 - medical problem, PmHx, age, sex, weight,
 height, diet hx (including allergies)
- References for Guidance
 - Field Manual No. 4-02.56
 - ADA & ASPEN Manuals
 - Medical Center MNT Handbook
 - Bowes and Church's Food Values

Available Resources???

- ♦ Commercial Enteral Products
 - intact nutrients vs elemental
- Medical Diet Supplements
- ♦ Homemade Concoctions
- ◆ Commercial Parenteral Products
 - Dextrose, amino acids, lipids

Guidelines for Enteral Usage

- ◆ Determine best feeding route
- Estimate patient's Caloric and protein needs
- Calculate appropriate feeding regimen
- Monitor patient tolerance and appropriateness of nutrition support guidelines

Pediatric RDA Guidelines

♦ Energy Needs

Infant: 108-90Kcals/Kg

- 1-3 y/o: 90-75Kcals/Kg

- 4-10 y/o: 75-55 Kcals/Kg - 4-10 y/o: 2.5 - 1.2g/Kg

Protein Needs

Infant: 3 - 1.6g/Kg

- 1-3 y/o: 2.5 - 1.2g/Kg

- 11-18 y/o: 55-40 Kcals/Kg - 11-18 y/o: 2.0 - 8.0g/Kg

Adult Feeding Guidelines

- Energy Needs
 - 20-25Kcals/Kg (obesity)
 - 25-30Kcals/Kg
 - 30-35Kcals/Kg(Trauma, Burns <20%TBSA)
 - ~40-60Kcals/Kg(Burns >20% TBSA)

- Protein Needs
 - 0.6-0.8g/Kg (protein intolerance)
 - 0.8-1.0g/Kg (maintenance)
 - 1.0-1.2g/Kg (mild stress, HD)
 - 1.2-1.5g/Kg (General ICU pt, wound healing, CAPD)
 - 1.5-2.5g (severe stress:Burns/Trauma/Sepsis/CAVH)

Guidelines for Commercial Enteral Product Usage

1. Identify Calorie and Protein content

2. Calculate volume of formula needed to meet estimated Calorie and protein needs

3. Determine % RDI and free water provided by calculated formula volume

Example with Osmolite

- ♦ Given est. needs: 2000-2400Kcals, 75-90g protein
- \bullet 1 can = 237mL/8 oz
 - 250Kcals per can or 1.06 Kcals/mL
 - 8.8 grams protein per can or 14% total Calories
 - 199 mL free water
- ♦ 2000Kcals/ 250Kcals = 8 cans (min)
- ♦ 8 cans X 8.8gms protein = ~70gms protein
- ♦ 9 cans X 250Kcals = **2250Kcals**
- ♦ 9 cans X 8.8gms protein= ~79gms protein

Example with Osmolite

- \bullet 1 can = 237mL/8 oz
 - -9 cans X 237 mL = **2133mL** formula
- ♦ 1 can contains 199 mL water
 - 9 X 199mL = **1791 mL free water from total volume**
- ♦ Per label 2000 Kcals provides 100% RDI
 - For wound healing and Burns consider additional supplementation: MVI, Vit C, Zinc

Administration of Formula

- ◆ Feeding volume= 1791 mL or 9 cans
- Continuous Recommendation
 - -1791mL/24 hours = ~ 75 mL/hour
- Bolus Recommendation
 - general rule: 200-500mL per bolus
 - -1 can = 237 mL
 - 1 can q 2 1/2 hours or 2 cans q 5 hours
- ◆ Intermittent Recommendation
 - 150mL X 12 hours

Additional Water Needs

- ♦ To avoid dehydration and constipation
- Assess adequacy
 - urine color, I/O, chemistries, stool firmness
- Minimum Requirement:
 - 1mL free water/Kcal
 - Osmolite: 1791mL free water for 2250 Kcals
 - --> need: 459mL addt'l water
- Conditions for higher needs
 - Burns/ Fever/GI losses

Medical Diet Supplements

- ♦ Carnation Instant Breakfast
 - Mix with milk for higher protein/ calories
 - 1 serving + 8 oz w. milk= 280Kcals, 12gprotein
- ◆ Ensure
 - Follow directions for mixing powder
 - Provides:1.06Kcals/mL, 42g protein/L formula, 948mL formula=100% RDI, 845ml free water in 1L of formula

Blenderized Formula

- Food safety/sanitation is a must!
- ♦ Analyze nutrient content, then blenderize
- Use high biological protein source: milk/egg/ meat
- ♦ Fruit/veg/starch/oil source
- Thin solids (with milk, juice, broth, gravy or water) and strain, if needed

Tube feeding Guidelines

- ◆ Determine administration
 - Continuous, bolus, intermittent
- ♦ HOB >30 degrees
- ◆ Flush tube regularly with warm water (30-50mL) to avoid tube clogging
- ♦ Assess GI function for tolerance
- ◆ Transition to oral diet when possible

Assessing GI Tolerance

ASSESSMENT	APPROPRIATE	MALFUNCTION
BM	1-3 q 1-3 days	None >3 days, or >3/day or >500mL q 8hrs
BS	Present	Not present or high pitched
Abd Girth	Soft, usual diameter	Firm, distended
N/V	Not present	present
Fistula	Absent or low output	>500mL
Gastric Residual	Absent or low output	>200mL

Parenteral (Intravenous) Nutrition

- Partial or complete nutrition depending on gut function
- ♦ Simplest elements (dextrose, lipids, AA)
- Volume depends mainly on macronutrient concentration
- Determine macronutrient distribution
 - AA 15-20% total Calories
 - NP Calories use 30/70 or 40/60 split lipid/dex

PN Access determines feeding

- Peripheral Access (small veins)
 - Short- duration (<2 weeks)
 - High volume, low concentration
- ◆ Central Access (big veins)
 - Long-duration (>2 weeks)
 - Low volume, high concentration

Determining Volume of PN

- ◆ AA and dextrose noted in grams
- General guideline for concentration
 - Concentration = particle/solution
 - particle = macronutrient
 - Example
 - 10% solution--> .1g/mL
 - 70% solution--> .7g/mL

PN Concentration Guideline

- Calculate dextrose and AA concentration the same way
- ♦ Example 1:
 - 200g dextrose from 10% concentrated sol
 - -200g X 1mL/.1g = 2000mL
- ♦ Example 2:
 - 200g dextrose from 70% concentrated sol
 - -200g X 1mL/.7g = 286mL

Lipid Concentration in PN

- ♦ Noted as volume (mL) not weight (g)
- ◆ 20% concentration = 2Kcals/mL
- ◆ 10% concentration = 1.1Kcals/mL
- Lipids: concentrated Calories that do not bother vein patency

Rule of Thumb on concentration

- Larger veins (Subclavian) no limit on concentration
- ♦ Smaller veins require low concentrations
 - dextrose limits: not greater than 10% final concentration
 - amino acid limits: not greater than 3% final concentration

Caloric content

- ◆ 1 g Dextrose = 3.4 Kcals (hydrated)
- 1g AA = 4.0 Kcals
- ♦ 1 mL 20% lipid = 2Kcals
- ↑ 1 mL 10% lipid = 1.1Kcals

Assessing Nutritional Adequacy

- Are feeds at goal administration without interruption?
- Labs (visceral proteins, chemistries, urine)
- Physical Assessment
 - general appearance, vital signs, wt trends, fluid retention, skin, nails, hair, mouth, teeth, muscle strength

Case Questions?

- ♦ 1) Patient is allergic to milk products. What do you feed this patient?
- ♦ 3) Pt has burns >35% TBSA. How do you feed this patient?
- ♦ 4) Pt is a 6 y/o underweight girl with burns from Iraq. What do you feed this patient?

Objectives

- ♦ Identify nutritional dilemmas
- ♦ Maximize available resources
- Provide optimal nutrition support with available resources

Questions???

CPT Kerri Murphy, RD, CNSD Office 210-916-8479 DSN: 429

